MOTOROLA

MC68008 MINIMUM CONFIGURATION SYSTEM

Prepared by
Geoffrey Brown and Kyle Harper
Advanced Microcomputer Applications Engineering
Microprocessor Division
Motorola Inc.
Austin, Texas

INTRODUCTION

This application note demonstrates the design of a simple high-performance MC68008 system that uses the MC68681 Dual Universal Asynchronous Receiver Transmitter (DUART) to interface with external devices. The MC68008 is an excellent low-cost alternative to the MC68000 and features an 8 -bit data bus while maintaining software compatibility with the rest of the M68000 Family. The MC68681 DUART is an M68000 Family data communications chip that features:

Two independent asynchronous serial channels,
A programmable 16-bit counter/timer,
A 6-bit parallel input port, and
An 8-bit parallel output port.
Emphasis in this design concept is placed upon performance, expandability, and low chip count.

The M68000 system design principles demonstrated in this application note include:

Interrupt hardware,
Peripheral interfacing,
Memory interface techniques,
Memory refresh arbitration in an M68000 system, and
Efficient serial I/O software.
The system, described in this design concept, features the following hardware:

An 8 MHz MC68008 microprocessor,
16 K bytes of ROM,
64 K bytes of dynamic RAM with no wait states, and
An MC68681 DUART.
The following paragraphs describe the hardware required for a high-performance, expandable, low chip count MC68008 system followed by a description of the software necessary to initialize and drive the MC68681 DUART.

HARDWARE REQUIREMENTS

The MC68008 has an asynchronous bus structure in which bus cycles are initiated by the assertion of address strobe
($\overline{\mathrm{AS}}$) by the processor and are terminated by the assertion of data transfer acknowledge ($\overline{\mathrm{DTACK}}$) by the peripheral or memory device being addressed. Figures 1-4 show the minimum hardware necessary for an MC68008 system consisting of:

Address decode logic,
$\overline{\text { DTACK }}$ generation logic,
Reset logic,
Bus error generation logic,
System memory,
Interrupt handling logic, and
An MC68681 interface.
The following paragraphs detail the required hardware as applied to the design concept described in this application note.

Address Decode Logic

The only tricky part of address decoding for an MC68008 system is that the system ROM must be mapped to address $\$ 00000$ at reset. It would be impractical to fix the ROM at the bottom of the address map, as this would not allow for dynamic programming of interrupt vectors. To provide dynamic mapping of these interrupt vectors, an SN74LS164 shift register (U28) is used to generate a signal, $\overline{\text { MAP }}$, which is low for the first eight memory cycles after reset (the number of cycles necessary to fetch the reset vector and stack pointer). U28 is reset along with the processor and is clocked by the rising edge of $\overline{\mathrm{AS}}$. The $\overline{\mathrm{MAP}}$ signal generated by U28 is used by the address decoding circuitry to force selection of ROM when MAP is low and to allow normal memory decoding when $\overline{\text { MAP }}$ is high.

In the design given in this application note, address decoding is accomplished by a PAL16L8 (U22). This PAL is programmed to generate eight chip-select signals from ten input signals. The inputs to the PAL are the upper eight address lines (A12-A19), $\overline{\text { IACK }}$ (the NAND of the MC68008 function code lines, FC0-FC2), and the $\overline{\text { MAP }}$ signal. Four of the PAL-generated chip-select lines are used in this design to locate RAM at the address $\$ 00000$, ROM at $\$ A 0000$, and the MC68681 at \$F0000. The four remaining chip-select lines are available for future system expansion.

FIGURE 1 - MC680008 and Interrupt Hardware

FIGURE 2 - RAM and ROM

FIGURE 3 - Dynamic RAM Controller

FIGURE 4 - MC68681 DUART

DTACK Generation Logic

There are three possible sources of $\overline{\text { DTACK }}$:
DUART DTACK,
RAM $\overline{\text { DTACK, }}$, and
ROM DTACK.
The DUART generates its own $\overline{\text { DTACK }}, \overline{\text { DTACK }}$ for RAM is generated by the RAM control circuitry, and DTACK for ROM is generated by an SN74LS175 quad flip-flop (U33). These three DTACK sources are NANDed together by U25 and U21 to generate one processor DTACK.

Reset Logic

There are two sources of system reset:
Power-up reset, and
Pushbutton reset.
Power-up reset is generated by the timer (U29B) which produces an active high pulse of approximately one-half second duration. The pushbutton reset, which allows the user to reset the system without powering down, is generated by a debounced switch. These two reset signals drive $\overline{\text { RESET }}$ and HALT through SN74LS05 open-collector drivers (U23).

Bus Error Generation Logic

The bus error signal, $\overline{\mathrm{BERR}}$, is generated by an SN74LS175 quad flip-flop (U35). U35 counts clock pulses that occur after $\overline{\mathrm{AS}}$ becomes asserted. If $\overline{\mathrm{AS}}$ is still asserted after four rising edges of the E clock (between 5 and 6.5 microseconds), U35 will generate $\overline{\mathrm{BERR}}$.

System Memory

The MC68008 system presented here has a system memory that consists of 16 K bytes of ROM and 64 K bytes of dynamic RAM (see Figure 2). Because system performance is critical in this design, a fairly complicated, but fast, dynamic RAM control circuit has been designed (see Figure 3). This circuit uses two delay lines to sequence RAS and to address the MUX, $\overline{\text { CAS }}$, and $\overline{\text { DTACK }}$ signals. Delay lines are necessary in order to optimize memory cycle times and make it possible to design the memory controller such that the system can operate without wait states.

A description of RAM refresh request synchronization and arbitration is given in the following paragraphs. Note that, for now, a signal called SELECT is assumed which initiates refresh cycles. The principle requirements of this signal are that it occurs periodically and that it becomes asserted only while $\overline{\mathrm{AS}}$ is negated. In addition, the RAM decode signal is qualified with $\overline{\mathrm{AS}}$ in order to create a RAM request signal. Either the SELECT signal or the RAM request signal may initiate a RAM cycle.
The front end of the RAM controller consists of three OR gates (U26) followed by a three input NAND gate (U25) which in turn feeds into the first delay line (U32). Each of the three OR gates has as one of its inputs a signal from the second delay line (U36) which changes state in the middle of the memory cycle. The other inputs to these OR gates consist of SELECT, RAM request, and an inverted feedback path from the output of the three input NAND. The initiation of a RAM cycle via either SELECT or RAM request causes the output of the NAND gate to go high. The output of the NAND gate is then held high by the inverted feedback path until the feedback from the second delay line forces it low. The purpose of the feedback path from the second delay line is to guarantee that the delay lines will be cleared and ready to begin another RAM cycle at the end of a cycle. The outputs of the first delay line generate the RAS, MUX, and CAS signals. Both the RAS and address multiplex signals are
asserted during both types of RAM cycles (normal and refresh). $\overline{\text { CAS }}$ is generated only during normal cycles and must be held asserted until the processor removes $\overline{\mathrm{AS}}$. In order to accomplish this, the appropriate delay tap (80 nanoseconds) is used to clock the SELECT signal through a flip-flop (U31B). This flip-flop is cleared when $\overline{\mathrm{AS}}$ is negated. The output of this flip-flop is used for both the $\overline{\text { CAS }}$ signal and for the RAM DTACK. The 8 MHz MC68008 allows the $\overline{\mathrm{DTACK}}$ to be asserted up to 90 nanoseconds before data from memory is valid on a read cycle. The specifications for MCM6665L15 dynamic memories guarantee that data is valid 75 nanoseconds after $\overline{\mathrm{CAS}}$.
The memory refresh controller operates on the principle of cycle stealing. Refresh requests may only occur between MPU bus cycles. If an MPU RAM cycle request occurs during a refresh cycle, it will not be started until the refresh cycle is finished. At periodic intervals, a free-running clock (U29A) clocks a flip-flop (U31A) to generate a refresh request. This refresh request is synchronized with the MPU clock by two flip-flops (U30).
The MC68008 ac electrical specifications guarantee one falling clock edge during the $\overline{\mathrm{AS}}$ high time and that there will be at least a one-half clock period of $\overline{\mathrm{AS}}$ high time following that clock edge. Arbitration between MPU and refresh requests occurs during this one-half clock period. The refresh request synchronizer consists of two SN74F74 flip-flops (U30). The first flip-flop (U30A) has as its input the refresh request signal from the refresh request flip-flop (U31A) and is clocked by the MPU clock. The second flip-flop (U30B) has as its input the output of the first synchronizer flip-flop (U30A) and is clocked by the MPU clock qualified by $\overline{\mathrm{AS}}$ high. This two-level synchronizer is used to ensure that there will be no risk of the first synchronizer flip-flop (U30A) entering a metastable state due to a missed setup time. The output of the synchronizer flip-flop (U30B) is the SELECT signal. All three flip-flops of the refresh circuitry are cleared after the $\overline{\mathrm{CAS}} / \overline{\mathrm{RAMDTACK}}$ flip-flop (U31B) has been clocked during the refresh cycle. Address multiplexing for the RAM is done by four SN74S153 multiplexers (U1, U2, U11, and U17) with the appropriate addresses routed to the RAMs by SELECT and MUX. Refresh addresses are generated by an SN74LS393 dual 4-bit counter (U19) which is clocked by the refresh clock.

Interrupt Handling Logic

The interrupt handling logic must prioritize incoming interrupt requests and generate interrupt acknowledge signals back to the interrupt sources. Interrupt prioritization is accomplished with an SN74LS148 8-to-3 priority encoder (U13). The MC68008 supports three of the M68000 interrupt levels (interrupt levels two, five, and seven); therefore, only two of the outputs of U13 are connected to the MC68008. An SN74LS138 3-to-8 demultiplexer (U14) is used to generate $\overline{\text { IACK }}$ signals for interrupting devices. The SN74LS138 is enabled when $\overline{\mathrm{AS}}$ is asserted and FC0-FC2 are all high (indicating an interrupt acknowledge cycle). Because the MC68681 uses only one of the interrupt levels (interrupt level five), the remaining two levels are available for future system expansion.

The MC68681 Interface

With these logic circuits in place, interfacing the MC68681 to the MC68008 is trivial (see Figure 4). The RESET, R/ $\overline{\mathrm{W}}$, and data bus lines (D0-D7) are connected directly between the MC68681 and the MC68008. The I/O chip-select line generated by the address decode logic ($\overline{\mathrm{I} / \mathrm{O}}$) is connected to the MC68681 chip-select ($\overline{\mathrm{CS}}$) pin. These address lines are
used instead of A0-A3 in order to maintain hardware design consistency with the other M68000 Family microprocessors (which do not have address line A0). The MC68681 interrupt ($\overline{\mathrm{IRQ}}$) and interrupt acknowledge (IACK) pins are tied to the $\overline{\text { IL5 }}$ and IACK5 lines of the interrupt handling logic, respectively, thus assigning the MC68681 interrupt a level 5 priority. Finally, a 3.6864 MHz crystal is connected between the MC68681 X1/CLK and X2 pins. The crystal is required for the on-chip baud-rate generator. 15 pF and 5 pF shunt capacitors must also be connected between the crystal and ground as shown to ensure proper operation of the oscillator.

The MC68681 serial channels are connected to external devices via RS-232 drivers and DB-25 connectors. The MC68681 OP0, IP0, OP1, and IP1 pins are used as the $\overline{\text { RTSA }}, \overline{\text { CTSA }}, \overline{\text { RTSB }}$, and $\overline{\text { CTSB }}$ handshake lines, respectively; therefore, they too are routed via the RS- 232 drivers to their respective connectors.

THE DUART SOFTWARE

This design will use both of the channels and the $\overline{\mathrm{RTS}} / \overline{\mathrm{CTS}}$ handshake capabilities of the DUART. The interface software required for this design is flowcharted in Figure 5 and is listed at the end of this document. There are three routines: DINIT, INCH, and OUTCH.

DINIT is the DUART initialization routine and is executed upon system power-up. After DINIT initializes the DUART channels, it enables channel A and channel B in normal operation mode. INCH is the input character routine. Upon entry, INCH requires the channel base address in address register A0. Upon return, the lower byte of data register D0 will contain the received character. OUTCH is the output character routine. Upon entry, OUTCH requires the channel base address in address register A0 and the character to be transmitted in the lower byte of data register D0.

SUMMARY

The system presented in this design concept is a low-cost, high-performance minimal chip count system. With the MC68681 DUART alone, this system offers a high degree of interface flexibility. It provides two serial I/O channels, a parallel input port, a parallel output port, a counter/timer, and versatile interrupt capabilities. However, if more peripheral chips are required, they can be interfaced easily. Also, if chip count is of higher importance than performance and/or expandability, the design presented here can be reduced even further by simplifying the RAM controller logic and the interrupt handler logic.

FIGURE 5 - MC68008 Minimum System Software Flowcharts

$$
5 .
$$

FR
PAGE 1 of 4
84 13:44:18
8-BASED SYSTEM TO INITIALIZE
INITIALIZE DUART
INPUTA CHARACTER
OUTPUTA CHARACTER
BASE ADDRESS OF G8G81 OUART
CHANNEL A BASE ACDRESS
MODE REGISTER $1 A$
MODE REGISTER 2A
STATUS REGISTER A
CLOCK SELECT REGISTER A
COMMAND REGISTER A
RECEIVER BUFFER A
TRANSMITTER BUFFER A INPUT PORT CHANGE REGISTER INTERRUPT STATUS REGISTER
INTERRUPT MASK REGISTER CURRENT COUNTER/TIMER MOST SIGNIFICANT BYTE CURRENT COUNTER/TIMER LEAST SIGNIFICANT BYTE CURRENT COUNTERITIMER LIMER LOWER REGISTER

$$
\begin{aligned}
& \text { CHANNEL B BASE ADDRESS } \\
& \text { MODE REGISTER } 1 \text { B } \\
& \text { MODE REGISTER ZB } \\
& \text { STATUS REGISTER B } \\
& \text { CLOCK-SELECT REGISTER B } \\
& \text { COMMAND REGISTER B } \\
& \text { RECEIVER BUFFER B } \\
& \text { TRANSMITTER BUFFER B } \\
& \text { INTERRUPT VECTOR REGISTER } \\
& \text { INPUT PORT (UNLATCHED) } \\
& \text { OUTPUT PORT CONFIGURATION REGISTER } \\
& \text { START-COUNTER COMMAND } \\
& \text { OUTPUT PORT REGISTER BIT SET COMMAND } \\
& \text { STOP-COUNTER COMMAND } \\
& \text { OUTPUT PORT REGISTER BIT RESET COMMAND }
\end{aligned}
$$ CVE A 68681 OUART:

OINIT - SUBROUTINE $\begin{array}{ll}\text { AUTHOR } & \text { - KYLE HARPER } \\ \text { DATE } & \text { - DECEMBER 22, } \\ \text { VERSION } & 1983 \\ \text { - }\end{array}$ $\stackrel{r}{a}$
FRS, PCS,BRS

$$
F
$$

 OINIT - SUBROUTINE TO INITIALIZE DUART
INCH - SUBROUTINE TO INPUTA CHARACTER * SYSTEM ADDRESSES
 DUART+8
OUART+8
OUART +10

$+$

 \pm
\sim
+
∞
α
3
0
0
 ∞
\sim
+
+
+
\vdots
\vdots
\vdots
0
 MOTOROLA M68000 ASM VERSION

$$
1.30 S Y S:
$$

MINSYS
PAGE 3 of 4

